Integration within and between muscles during terrestrial locomotion: effects of incline and speed.

نویسندگان

  • Timothy E Higham
  • Andrew A Biewener
چکیده

Animals must continually adapt to varying locomotor demands when moving in their natural habitat. Despite the dynamic nature of locomotion, little is known about how multiple muscles, and different parts of a muscle, are functionally integrated as demand changes. In order to determine the extent to which synergist muscles are functionally heterogeneous, and whether this heterogeneity is altered with changes in demand, we examined the in vivo function of the lateral (LG) and medial (MG) gastrocnemius muscles of helmeted guinea fowl (Numida meleagris) during locomotion on different inclines (level and uphill at 14 degrees ) and at different speeds (0.5 and 2.0 m s(-1)). We also quantified function in the proximal (pMG) and distal (dMG) regions of the MG to examine the extent to which a single muscle is heterogeneous. We used electromyography, sonomicrometry and tendon force buckles to quantify activation, length change and force patterns of both muscles, respectively. We show that the LG and MG exhibited an increase in force and stress with a change in gait and an increase in locomotor speed, but not with changes in incline. While the LG and MG exhibited similar levels of stress when walking at 0.5 m s(-1), stress in the LG was 1.8 times greater than in the MG when running at 2.0 m s(-1). Fascicle shortening increased with an increase in speed on both inclines for the LG, but only on the level for the pMG. Positive work performed by the LG exceeded that of the pMG and dMG for all conditions, and this difference was magnified when locomotor speed increased. Within the MG, the pMG shortened more, and at a faster rate than the dMG, resulting in a greater amount of positive work performed by the pMG. Mean spike amplitude of the electromyogram (EMG) bursts increased for all muscle locations with an increase in speed, but changes with incline were more variable. The functional differences between the LG and MG are likely due to the different moments each exerts at the knee, as well as differences in motor unit recruitment. The differences within the MG are likely due to motor unit recruitment differences, but also differences in architecture. Fascicles within the dMG insert into an extensive aponeurosis, which results in a higher apparent dynamic stiffness relative to fascicles operating within the pMG. On the level surface, the greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which occur with changes in gait, speed and grade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vaulting mechanics successfully predict decrease in walk–run transition speed with incline

There is an ongoing debate about the reasons underlying gait transition in terrestrial locomotion. In bipedal locomotion, the 'compass gait', a reductionist model of inverted pendulum walking, predicts the boundaries of speed and step length within which walking is feasible. The stance of the compass gait is energetically optimal-at walking speeds-owing to the absence of leg compression/extensi...

متن کامل

Muscle force-length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors.

For a terrestrial animal to move in the complex natural environment, the limb muscles must modulate force and work performance to meet changing mechanical requirements; however, it is not clear whether this is accomplished via a collective shift in function by all limb muscles, or a division of labor among limb muscles. Do muscles differ in their ability to modulate force-length contractile fun...

متن کامل

The metabolic cost of walking on an incline in the Peacock (Pavo cristatus)

Altering speed and moving on a gradient can affect an animal's posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dep...

متن کامل

Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling.

Successful locomotion through complex, heterogeneous environments requires the muscles that power locomotion to function effectively under a wide variety of conditions. Although considerable data exist on how animals modulate both kinematics and motor pattern when confronted with orientation (i.e. incline) demands, little is known about the modulation of muscle function in response to changes i...

متن کامل

Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).

Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2008